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The strength distribution of ceramic fibres is commonly described using a two-parameter
Weibull distribution function. This study shows that the determination of these parameters
from around 30 tensile tests obtained at one single gauge length (L0) does not allow the
strength distribution at other gauge lengths to be correctly predicted. The reliability in the
Weibull parameter determination is lowered by variations in fibre diameter (D) and the
insufficient number of fibres tested. An effective failure stress σE = σ · (πD · L0)1/m is first
introduced to take into account fibre diameter variations and to extract the two Weibull
parameters from the 180 tests obtained at 6 gauge lengths. It is then shown that the linear
size effect, which is expected from the standard Weibull model, is not appropriate to fit
correctly this experimental strength distribution. The length dependence follows a power
law (Lβ

0) leading to an effective failure stress σE = σ · (πD · Lβ

0)1/m. Diameter variations along
the gauge length cannot be responsible for this non linear variation with the length, which
is attributed to a large scale fluctuation of the density of defects. The value of β can bring
valuable information about fluctuations in the fibre processing conditions.
C© 2003 Kluwer Academic Publishers

1. Introduction
Small diameter ceramic fibres are used as reinforce-
ments for brittle matrix composites the behaviour of
which depends strongly on the properties of the fibres.
In order to design structures in such composite materi-
als it is necessary to be able to quantify the strengths of
the fibres. However the failure stresses of ceramic fibres
show considerable scatter so that a statistical approach
is necessary to predict the failure stresses of the fibres
used in structures.

Testing bundles of fibres could allow the stress distri-
bution of the fibres of the bundle to be obtained, [1, 2].
However it may introduce some ambiguities concerning
the number of fibres which are effectively loaded. The
load distribution among the fibres in the case when these
fibres are not perfectly aligned and identically stretched
at the beginning of the tensile test is not known pre-
cisely. Tensile tests conducted with single fibres give a
straighter determination of the failure stress distribution

of the fibres inside the bundle, but, in order to obtain
the data necessary for a statistical analysis, many test
results have to be obtained.

The distribution of the failure stresses of brittle ce-
ramic fibres is most often analysed using the Weibull
statistical model. This model is based on the failure
of a chain in which the weakest link controls rupture
and seems to be well adapted to describe a set of ten-
sile test results carried out at one gauge length. The
analysis of a wide range of ceramic fibres (SiC based
fibres and oxide fibres) at different gauge lengths has
however permitted to draw limitation that a blind util-
isation of the Weibull model could give. The aim of
this paper is to point out common restrictions or re-
marks that arise from this analysis and to propose an-
other formulation of the model. This work will be il-
lustrated by the study of the tensile properties of the
mullite-alumina Nextel 720 fibre [3] produced by 3M
[4].
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2. Specimen preparation
Traditionally a number, often around thirty, of individ-
ual fibres of identical lengths are tested in tension. The
fibres have to be carefully extracted from the bundle.
This is achieved by immersing a length of the bundle
slightly longer than the gauge length inside absolute
alcohol in a rectangular and flat container and separat-
ing it gently into around five meshes. One single fibre
extremity is then held between gloved fingers and care-
fully pulled out from the mesh. The fibre is then placed
on a cardboard frame, aligned on a straight line and
fixed with epoxy glue. The distance between the two
glue points defines the gauge length, which is marked
by two holes on the cardboard. Two other holes allow
the cardboard to be fixed to the grip assembly, and other
apertures are made every 50 mm for the fibre diame-
ter to be measured optically using an image shearing
eyepiece1 or a laser scan micrometer2. The prepared
sample is fixed on the tensile machine [5] and the cen-
tral part of the cardboard is removed by cutting lateral
slots from the holes which define the gauge length. Frac-
ture morphologies are observed in a SEM, to determine
whether the defect which initiated fracture is located on
the fibre surface or inside the fibre.

3. The classical use of the Weibull statistical
model

The survival probability PS of a fibre of diameter D
and length L0 under a stress σ , can be first modelled
using a unimodal Weibull distribution with a volume or
a surface dependence, according to the defect location:

PS(σR ≥ σ ) = exp(−θS · σ m · S) (1)

if defects are located on the fibre surface, and

PS(σR ≥ σ ) = exp(−θV · σ m · V ) (2)

if defects are located in the fibre volume, where σR is
the failure stress of the fibre, m is the Weibull modulus,
which characterises the width of the failure stress dis-
tribution, that is the dispersion of the size of the defects
in the fibre, θSσ

m and θVσ m are the intensity (average
number per unit length) of defects associated to a failure
stress lower than σ for defects located on the external
fibre surface and in the fibre volume respectively. S is
the external surface of the fibre tested (S = L0 · π · D)
and V its volume (V = L0 · π · D2/4). This assumes
that the fibres are circular, which is the case for most of
the commercial ceramic fibres as seen in Fig. 1.

The experimental failure probabilities PR = 1 − PS
are determined from the tensile tests in the following
way. NL0 fibres tested at the same gauge length L0 are
ranked in by increasing order of their failure stress. The
probability of failure PR(i) = i/(NL0 +1) is assigned to
the i th fibre broken at σR,i with σR,i−1 ≤ σR,i ≤ σR,i+1.

The Weibull parameters m and θ can be deter-
mined using a least square fit linear regression of the

1Watson image shearing eye piece - M.E.L. Equipment Co.
2LSM 6000 - Mitutoyo.

plot ln[− ln(1 − PR(i)] as function of ln(σR,i), since
Equations 1 or 2 gives

ln[− ln(1 − PR)] = m · ln(σ ) + ln
(∣∣∣V

S

)
+ ln(θ ) (3)

4. The fibre diameter is not constant
For the above method to be valid the fibre diameter
has to be constant. Ceramic fibres are obtained from
the simultaneous spinning of hundreds of precursor fi-
bres followed by their pyrolysis. Small variations in the
hole diameters of the spinneret induce diameter vari-
ations from one fibre to another in the same bundle
of ceramic fibres. This spinning step requires precur-
sor of sufficient viscosity, which can lead to signifi-
cant diameter variations along the same precursor fibre.
This has been encountered for some SiC based fibres.
The conversion to ceramic fibres is accompanied by
an important volume change, which may also induce
a diameter variation. Differences up to 4 µm in the fi-
bre diameter in a same bundle are not rare as seen in
Fig. 2 [6].

The use of a mean diameter in the determination
of the Weibull parameters produces a significant error
[7, 8]. Larra-Curzio et al. [7] show that taking a mean
diameter of 12 µm, the m value is underestimated by
a factor 1.78 if the standard deviation is of 2 µm. The
fibre diameter has to be known for each fibre tested. If
the variation of the diameter along one fibre can be ne-
glected, the diameter is measured prior to each tensile
test. In the case of possible variation along the gauge
length, the diameter should be measured at the location
of the failure. In practice this is however not always
feasible as the elastic energy released during the failure
makes the fibre break into several pieces and the depo-
sition of absorbing media on the fibre surface (paraffin,
grease . . .) is not without effect on the fibre tensile prop-
erties. In this case, the diameter profile along the gauge
length is determined and the minimum diameter is taken
into account. In the present study diameter variations
along the 250 mm gauge lengths never exceeded 3%
and were neglected, but individual fibre diameter was
measured prior to each tensile test.

If the fibres present variations in their diameters
from one fibre to another, an effective failure stress σE
expressed as

σE = σR ·
(∣∣∣V

S

)1/m
(4)

has to be introduced to reflect the effect of volume or
surface variation on the failure probability. The ranking
is then carried out on these effective failure stresses
and the probability of failure PR( j) = j/(NL0 + 1) is
assigned to the j th fibre broken at σR,j with σE,j−1 ≤
σE,j ≤ σE,j+1. It can be seen that this ranking depends on
the value of m which is sought. This value is estimated
by an iterative calculation.
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Figure 1 (a) Nextel 720 fibre: the fibre is circular in cross section. Failure is initiated from a surface defect (black arrow), associated to the line of
contact with surrounding fibres (white arrow). (b) Detail of a welding line and associated critical defect.

Figure 2 Diameter variation of Nextel 720 fibre. Diameters of 280 fibres
(5 to 250 mm in length) were measured at different places, up to 6 for
250 mm lengths. The standard deviation along one fibre is 2.7%, but
significant variations from one fibre to another were observed [6].

In the analysis of the Nextel 720 strength distribu-
tion 25 values of m, ranging from 2 to 8 by step of 0.25
were tested. For each m, the value of θ was determined
to give the best fit between the experimental and the the-
oretical distributions of failure probability and among
the 25 pairs (m, θ ) determined by this analysis, the
best fit was chosen. The appropriateness of the fit was
estimated by a Kolmogorov-Smirnov criterion, which
gives the probability Pfit that the experimental failure
probability Pexp corresponds to the failure probability
PW predicted by a Weibull law as a function of λ.

λ = Max |PW(σE,i) − Pexp(σE,i)| · √
NL0 (5)

Pfit(λ) = 1−
∞∑

k=−∞
(−1)ke−2k2λ2

(6)
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Figure 3 Distribution of the failure stress for 33 fibres with a gauge
length of 100 mm. m = 6.25, θ = 1.15.104 GPa−6.25·m−2, P(λ) = 0.99.

Fig. 3 shows the result of this iterative calculation
for a gauge length of 100 mm. The best fit was found
for m = 6.25 and θ = 1.15.104 GPa−6.25 · m−2 with a
Kolmogorov-Smirnov criterion of 0.99.

5. The estimation of m depends on the
gauge length

The distribution of the 30 failure stresses obtained at
100 mm with the Nextel 720 fibre seems to be cor-
rectly fitted by an unimodal Weibull law (P(λ) close
to unity). It is common that publications describing the
failure stress distributions of a ceramic fibre stop their
investigation at this point [9–11] . From the experimen-
tal determination of m and θ at 100 mm, one should be
able to predict the failure stress distribution for vari-
ous gauge lengths. This has been checked by testing
an average of thirty fibres in tension at 5 other gauge
lengths L0 (L0 = 5, 10, 25, 50, 250 mm). The experi-
mental stress distributions were however not correctly
described with the Weibull parameters determined at
100 mm. A separate treatment of the results for each
gauge length by the method described in paragraph 4
gave distinct m values ranging from 3.75 to 6.75 as
shown in Fig. 4. This variation of m with the gauge
length is not compatible with a Weibull law as writ-
ten in Equations 1 or 2. Several hypotheses have been
proposed to explain these discrepancies.

6. The selection of the fibre during sample
preparation affects the strength
distribution

The extraction of individual brittle ceramic fibres from
a bundle is an arduous task. Weaker fibres can break
during fibre preparation, so that a selection of the
stronger fibres is unintentionally made which affects
the strength distribution. As longer lengths of fibres
are more difficult to extract than smaller ones, the bias
introduced during specimen preparation is more impor-
tant for longer gauge lengths. This fibre selection has
been identified by some authors as a major shortcom-
ing when testing single fibres [12]. The effect of this

selection on the fibre distribution can be modelled in
the following way:

Let us consider a fibre strength distribution in the
bundle following a two-parameter Weibull law (m, θ ),
and make the assumption that the fibres having a
strength lower than a threshold stress σth break dur-
ing their extraction from the bundle or mounting on
the cardboard frame. The survival probability of a fibre
subjected to a tensile stress σ , taking into account that
the fibre is first extracted from the bundle, becomes

PS(σR ≥ σ |σR ≥ σth)

= PS(σR ≥ σ )

PS(σR ≥ σth)
(7)

= exp

[
− θ·

∣∣∣∣SV·
(
σ m − σ m

th

)]
(8)

It has to be noticed that this threshold stress induced
by a selection of the fibres by the operator has not the
same physical signification that the threshold stress σu
usually found in the following expression of the survival
probability: PS(σR ≥ σ ) = exp(−θ V · (σ − σu)m). In
this later case σu is the value of the intrinsic stress below
which PS = 1 prior to any selection. In our case σu = 0.

Fig. 5 models the effect that a selection of fibres
(σth = 0.67 GPa, D = 12.5 µm) would have on the
strength distribution at L0 = 250 mm. This would
affect the concavity of the curve at the low stresses
but could not explain the discrepancies in the m values
observed.

7. The reliability of the m value relies on the
number of fibres tested

An other hypothesis to explain this variation was that
the 30 number of fibres tested at each gauge length
was too low to allow a good reliability in the Weibull
parameter determination [8, 13].

Simulations of thousands strength distributions were
made, to determine the effect of the number of tested
fibres on the reliability of the m determination. The
following method was chosen for each simulation:
30 numbers between 0 and 1 were drawn randomly,
so as to give a set of failure probabilities Pi, with i = 1
to 30. A failure stress σi as assigned to each Pi by the
following relationship:

σi =
[− ln(1 − Pi)

S · θ

]1/m

(9)

with m = 4, θ = 7.22 × 104 GPa−4 m−2, S = (12.5 ×
10−6) · π · (25 × 10−3) m2.

These 30 failure stresses simulated the result of a
set of 30 tensile tests for 25 mm fibres of a constant
diameter of 12.5 µm and with a defect distribution de-
scribed by a Weibull law with the above m and θ pa-
rameters. The m∗ and θ∗ parameters were then newly
estimated from these 30 simulated failure stresses us-
ing the method described in paragraph 4. The result of
thousand simulations is presented in grey in Fig. 6. The
mean m∗ value was 3.96 and the standard deviation was
0.68.
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Figure 4 The separate analysis of the failure stress distribution at gauge lengths of 5, 10, 25, 50, 100, 250 mm gives distinct Weibull parameters.

The number of simulated tests was then extended
to 180. The results of thousand simulations, shown in
black in Fig. 6 were showing a lower dispersion than
with 30 fibres with a mean value m∗ = 4.03 and a
standard deviation equal to 0.29.

The introduction of the effective failure stress
σE = σR · (|VS )1/m allowed the 180 experimental fail-

ure stresses obtained with the six gauge lengths to be
analysed on the same curve. Fig. 7 shows that all the
experimental data could be gathered in one single curve
giving m = 4 and θ = 7.22.104 GPa−4 m−2.

It can be seen that the precision of the determination
of m was significantly improved by the use of the effec-
tive stress allowing the 180 test results to be analysed on
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Figure 5 The effect of a fibre selection during specimen preparation on
the strength distribution is modelled (bold curve) and compared to the
strength distribution without fibre selection.

the same distribution. In addition, the range of values
of m∗ obtained by simulations covered the range of val-
ues obtained from experiments. This is a confirmation
of the validity of the model.

8. The flaw density fluctuates along
the length

A closer examination of Fig. 7 reveals a deviation of the
experimental results from the theoretical curves from
a failure probability of 0.75, showing a saturation of
the experimental probability. Moreover, longer gauge
lengths give rise to higher effective failure stresses in
average as shown by the gradual shift of the horizontal
lines when going from 5 mm to 250 mm. This can also
be shown by re-examining separately the results at each
gauge length with the Weibull parameters obtained in
paragraph 7. It can be seen from Fig. 8 that there is a

Figure 6 Frequency histogram of the recalculated m∗ values from 1000 sets of 30 (grey) and 1000 sets 180 (black) failure stresses randomly drawn
from a Weibull distribution with m = 4.

Figure 7 The 180 failure stresses obtained from the 30 tensile test results
at 6 gauge lengths are analysed on the same curved by using an effec-
tive failure stress. m = 4, θ = 7.22 × 104 GPa−4 m−2, P(λ) = 0.42.
The horizontal lines correspond to the repartition of the effective failure
stresses. Every point of the experimental failure probability curve is ver-
tically aligned with a cross of one of the horizontal lines corresponding
to the experimental gage length used for this point. For example the first
and last points have been obtained at 250 mm.

progressive shift of the experimental stress distribution
with respect to the theoretical curve.

The aim of the effective failure stress was to balance
the volume effect in the failure stress. The L1/m

0 varia-
tion of σE is derived from the expression of the failure
probability in Equations 1 or 2. This formulation makes
the assumption that the flaws follow a Poisson point
process number in the length, so that the survival prob-
ability PS (PS = 1 − PR) is a multiplicative function of
the length

PS(σ, L1 + L2) = PS(σ, L1) · PS(σ, L2) (10)

It is however shown that the L1/m
0 variation of σE

does not allow a valid description of the length effect
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Figure 8 The Weibull parameters deduced in Fig. 5 by bringing together the 6 gauge length results do not allow the experimental failure probability
at a given gauge length to be predicted. A progressive shift from the left to the right of the theoretical curve is observed when increasing the gauge
length.

in the fibre failures. This means that there should be a
fluctuation in the flaw density along the length or that
the mean amount of flaws per unit length is a random
variable, changing from one fibre to the other.

Similar strength data processing was carried out
with tensile test results obtained with SiC based ce-
ramic fibres [14], the NL200 and Hi-Nicalon fibres
from Nippon Carbon and the Tyranno ZM and Tyranno
Lox M from Ube Industries and with the Nextel 650
alumina-zirconia fiber from 3M [15]. The resulting

curves are shown in Fig. 9. These curves exhibit the
same trends as those found in Fig. 7, that is the devi-
ation to the theoretical curve for the highest probabil-
ity and the higher effective strengths at longer gauge
lengths. This shows that the length dependence of the
flaw density has to be considered for a wide range of
ceramic fibres.

The fluctuation in the flaw density along the length
can be expressed in the Weibull model by the introduc-
tion of a β exponent on the gauge length (as initially
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Figure 9 Failure stress distributions of four fine SiC based fibres, the NL200 and Hi-Nicalon fibres from Nippon Carbon and the Tyranno ZM and
Tyranno Lox M from Ube Industries and Nextel 650 fibre from 3M . The methodology described in paragraph 7 has been applied to fit the experimental
curves. A deviation to the theoretical curves for the highest probabilities and higher effective strengths at longer gauge lengths are noticed for the
NL200, Tyranno Lox M, Tyranno ZM and Nextel 650.
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Figure 10 The prediction of the failure probability of Nextel 720 fibres for the six gauge lengths using the same Weibull parameters (m = 4.8,
θ = 6.614 GPa−4.8 · m−1−β ) can be obtained with a power law contribution of the gauge length (β = 0.425).

proposed by Watson and Smith [16] to account for a
random distribution of the fibre diameters), when the
density is a random variable with a stable distribution
[17]:

PS(σR ≥ σ, L0, D)

= exp

[
− θ · σ m · (L0)β ·

∣∣∣∣π D

π D2/4

]
(11)

The estimation of the parameters m, θ and β was
made in the following way: the strength distributions

are considered separately for each gauge length, using
as effective failure stress:

σE = σR · (L0)β/m

(∣∣∣∣π D

π D2/4

)1/m

(12)

The three parameters giving in average the best fit
for the six curves are looked for. For the Nextel 720
fibres the best fit was found for m = 4.8, θ = 6.61.103

GPa−4.8 m−1−β and β = 0.42, and the corresponding
curves are shown in Fig. 10. If the six gauge lengths
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Figure 11 The same methodology was applied to fit experimental failure stress distributions obtained on 3M-Nextel 650 alumina-zirconia fibres and
SiC based fibres.

are now plotted on the same curve, Fig. 11, it can be
seen that the gauge length are well distributed among
the effective failure stresses and that the theoretical and
experimental curves fit well even for the highest failure
probabilities.

9. Physical interpretation
From our experimental results, it is clear that a distribu-
tion function of the fracture stress with a gauge length

effect which is non linear in L0, gives a correct descrip-
tion of our data. In several papers, this is attributed to
statistical fluctuations of the diameter of fibres: the di-
ameter of each fibre is considered as a realisation of
a random variable [16], or is changing in a random
fashion along the fibre [18]. However the theoretical
derivation of the non linear scale effect is unclear with
these last assumptions. Let us consider a radius R(x)
changing along the fibre and make the assumption that
θ , giving the intensity of defects, is constant along the
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fibre. The stress applied on the section is then

σ (x) = F

π · R2(x)
(13)

where F is the applied load. The survival probability
can then be written

PS(σR ≥ σ ) = exp

(
−

∫ L

0
2π R(x) · θσ m(x) dx

)

(14)

PS(σR ≥ σ ) = exp

(
−2·π1−m ·θ ·Fm

∫ L

0
R(x)1−2mdx

)

(15)

Let us introduce an effective radius Reff so that R1−2m
eff

corresponds to the mean value of R(x)1−2m over the
gauge length L:

1

L

∫ L

0
R(x)1−2mdx = R1−2m

eff (16)

Then

PS(σR ≥ σ ) = exp
(−2 · π1−m · θ · F · R1−2m

eff · L
)

(17)

This demonstrates that a fluctuation of diameter
along a fibre can only generate a linear effect in L
(β = 1).

In [17] is introduced a fluctuating intensity (average
number per unit length) of defects. When this inten-
sity is considered for each fibre as a realization of a
random variable with a stable distribution with coef-
ficient β < 1 [19], the probability of non fracture is
exactly given by Equation 11. Therefore, the interpre-
tation of our results involves fluctuations of the density
of defects on a large scale (much larger than the gauge
length), according to probable fluctuations of the phys-
ical conditions during the elaboration of fibres. In the
case of the Nextel oxide fibres, fracture morphology
observation indicates that failure is initiated from dis-
continuous surface lines running parallel to the fibre
axis. These lines, shown in Fig. 1, originate from con-
tacts with neighbouring fibres in the bundle inducing
their welding during sintering [11]. Failure distribution
is then related to the interfilament distance distribu-
tion during processing, which can fluctuate at a large
scale. In addition along these weld lines one can ex-
pect a much higher intensity of defects, as compared to
healthy fibres. This is in agreement with our assump-
tion of interfibre fluctuation of intensity of defects. The
polymer derived silicon carbide based fibres studied
exhibit higher value of β than Nextel 720 fibres, i.e.,
less fluctuation of the defect density, except for Tyranno
Lox-M fibres. Fracture in these fibres is mainly caused
by surface notches due to mechanical abrasion during
the process. Unfortunately, information about process
details is not available in the literature to go further in
the interpretation.

10. Conclusions
From the analysis of a large data set on the tensile
strength of the mullite alumina Nextel 720 fibre, we
could demonstrate the following points:

– For every gauge length, the statistical distribution
of strengths follows the Weibull weakest link model,
according to defects located in the surface of fibres.

– The size effects expected from the standard
Weibull model is not appropriate.

– A power law size gauge length effect could cor-
rectly describe the data. It corresponds to a particular
(stable) distribution of the random intensity of defects,
as a result of large-scale fluctuations of defects.

– This methodology can be applied to other types of
ceramic fibres.

– Fluctuation in the fabrication process of the fibres
can be revealed by the knowledge of the coefficient β

of the stable distribution.
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